| Title: | Mathematics at DEC |
| Moderator: | RUSURE::EDP |
| Created: | Mon Feb 03 1986 |
| Last Modified: | Fri Jun 06 1997 |
| Last Successful Update: | Fri Jun 06 1997 |
| Number of topics: | 2083 |
| Total number of notes: | 14613 |
| T.R | Title | User | Personal Name | Date | Lines |
|---|---|---|---|---|---|
| 2070.1 | Have I missed something? | CHEFS::STRANGEWAYS | Andy Strangeways@REO DTN 830-3216 | Mon Oct 14 1996 11:32 | 29 |
| 2070.2 | another proof | 63509::YODER | MFY | Wed Feb 05 1997 14:54 | 18 |
The matrix A satisfies its characteristic polynomial, so we can write a[n]A^n + ... + a[0]A^0 = 0 where a[n] /= 0. Choose k, 0<=k<=n, such that a[k]/=0 and a[r]=0 for r<k. Then we can drop terms a[r]A^r for r < k, and write a[n]A^n + ... + a[k]A^k = 0 Multiplying by A^(n-k), a[n]A^(2n-k) + ... + a[k]A^n = 0 Using A^(n+1) = 0, all terms but the last are seen to be zero, so a[k]A^n = 0 Hence A^n = 0. | |||||