| Title: | Mathematics at DEC | 
| Moderator: | RUSURE::EDP | 
| Created: | Mon Feb 03 1986 | 
| Last Modified: | Fri Jun 06 1997 | 
| Last Successful Update: | Fri Jun 06 1997 | 
| Number of topics: | 2083 | 
| Total number of notes: | 14613 | 
    Can anyone point me to the identities etc. that are used to come up
    with the solution to the following Integral?
    
    (Sum = Integral sign)
                               ax
          ax                  e
    Sum e     Sin bx dx  =  -------- ( a Sin bx - b Cos bx )
    		      	     2     2
    			    a  +  b
    
    I have tried to work out the solution and keep ending up down a rat
    hole.  I have tried converting the integral to all exponentials and 
    that didn't work for me either.  
    
    I am doing a Fourier series solution where a = -j*pi*(2n-1)  and 
    b = -j*pi*(2n+1).  Just for fun I am trying to put all this in the
    integral and work the solution through long hand, rather than look-up
    table.  
    
    Any ideas?
    
    Dennis
    
    
    
| T.R | Title | User | Personal Name | Date | Lines | 
|---|---|---|---|---|---|
| 1495.1 | by parts | STAR::ABBASI | Fri Sep 20 1991 11:37 | 42 | |
|     
    by parts:
    
    I= sum e^ax sin bx
    
    I= e^ax cos bx   -  SUM (cos bx)a e^ax
       -----------          ---------------
            b                      b
    
    I= e^ax cos bx  -  a/b (  -e^ax sin bx  + SUM ( sin bx  a e^ax)  )
       -----------            ------------        -----------------
           b                    b                       b
    
    I= e^ax cos bx    - a/b  (  -e^ax sin bx + a/b I )
       -----------              ------------
           b                           b
    
    I = e^ax cos bx  - a e^ax sin bx   - a^2  I
       ------------    -------------     ---
          b                 b^2          b^2
    
    
    I + a^2 I  =  e^ax ( b cos bx - a sin bx)
        ----      ---------------------------
        b^2                 b^2
    
    
    I ( b^2 +a^2 )  =     "
      -----------
          b^2
    
    I= e^ax ( b cos bs - a sin bx)             QED
            ---------------------
               b^2 + a ^2
        
    
    
    also if you expand sin in exponentials (e^bi - e^-bi )/2i 
    it will work.
    
    /nasser
    
 | |||||
| 1495.2 | ZFC::deramo | the radio reminds me | Fri Sep 20 1991 19:31 | 9 | |
| Or just take e^ax sin bx to be the coefficient of i in the imaginary part of e^ax e^ibx = e^(a+ib)x. The indefinite integral becomes e^(a+ib)x / (a+ib) which equals (a-ib)e^(a+ib)x / (a^2 + b^2), and the coefficient of i in that is ( e^ax / (a^2 + b^2) )( a sin bx - b cos bx ). This is essentially the second suggestion in .1. Dan | |||||