|  | By "laws of ordinary . . .", I hope you mean associativity of + and *,
commutativity of +, and left and right distributivity of * over +.  My proof
follows.  To indicate the inverse, I am using a prime, "'", so x'' is the
inverse of the inverse of x.
Lemma 0:	(ba)' = a'b'.
	Proof:	(ba)(ba)' = e	(definition of inverse).
		ba(ba)' = e	(associativity of *).
		b'ba(ba)' = b'e	(x = y -> zx = zy, because * is a function).
		ea(ba)'	= b'e	(definition of inverse).
		a(ba)'= b'	(definition of identity).
		a'a(ba)' = a'b'	(x = y -> zx = zy).
		e(ba)' = a'b'	(definition of inverse).
		(ba)' = a'b'	(definition of identity).
Lemma 1:	a = a''.
	Proof:	a'a = e		(definition of inverse).
		a''a'a = a''	(x = y -> zx = zy).
		ea = a''	(definition of inverse).
		a = a''		(definition of identity).
Theorem:	(a+ab'a)'+(a+b)' = a'.
	Proof:	(b+a)(b+a)' = e			(definition of inverse).
		b(b+a)'+a(b+a)' = e		((b+a) was distributed).
		b''(b+a)'+a(b+a)' = e		(Lemma 1).
		((b+a)b')'+a(b+a)' = e		(Lemma 0).
		(bb'+ab')'+a(b+a)' = e		(b' was distributed).
		(e+ab')'+a(b+a)' = e		(definition of inverse).
		a'((e+ab')'+a(b+a)') = a'e	(x = y -> zx = zy).
		a'(e+ab')'+a'a(b+a)' = a'e	(a' was distributed).
		a'(e+ab')'+e(b+a)' = a'e	(definition of inverse).
		a'(e+ab')'+(b+a)' = a'		(definition of identity).
		((e+ab')a)'+(b+a)' = a'		(Lemma 0).
		(ea+ab'a)'+(b+a)' = a'		(a was distributed).
		(a+ab'a)'+(b+a)' = a'		(definition of identity).
		(a+ab'a)'+(a+b)' = a'		(commutativity of +).
 | 
|  | Left-multiplying each side of the identity b + a = (b + a) by (a+b)',
and right multiplying by a' gives:
	(a+b)'ba'  + (a+b)'aa' = (a+b)'(b+a)a'
Noting that addition is commutative, and that x'y = (y'x)', we get:
	((ba')'(a+b))' + (a+b)' = a'
	   (ab'(a+b))' + (a+b)' = a'
	(ab'a + ab'b)' + (a+b)' = a'
	   (a + ab'a)' + (a+b)' = a'
Which is the desired result.
 |