| Title: | Mathematics at DEC |
| Moderator: | RUSURE::EDP |
| Created: | Mon Feb 03 1986 |
| Last Modified: | Fri Jun 06 1997 |
| Last Successful Update: | Fri Jun 06 1997 |
| Number of topics: | 2083 |
| Total number of notes: | 14613 |
Theorem:
Any integer-producing polynomial P(x) of degree <= d can be expressed
in the form:
d
-- x
P(x) = \ a ( ), for some integers a .
/ j j j
--
j=0
Proof.
Trivially true for d=0. Assume true for d-1. Now, P'(x) = P(x+1) - P(x)
is an integer-producing polynomial of degree <= d-1. So P'(x) satifies the
theorem. But,
x-1 x-1 d-1
-- -- -- i
P(x) = P(0) + \ P'(i) = P(0) + \ \ a ( )
/ / / j j
-- -- --
i=0 i=0 j=0
d-1 x-1 d-1
-- -- i -- x
= P(0) + \ \ a ( ) = P(0) + \ a ( )
/ / j j / j j+1
-- -- --
j=0 i=0 j=0
d
-- x
= \ a ( ) , with a = P(0).
/ i-1 i -1
--
i=0
Which completes the induction.
| T.R | Title | User | Personal Name | Date | Lines |
|---|---|---|---|---|---|
| 281.1 | R2ME2::STAN | Thu May 23 1985 15:40 | 4 | ||
For this, and other neat results, see Polya und Szego, Problems and Theorems in Analysis, volume II, part 8, chapter 2 - Polynomials with Integral Coefficients and Integral-Valued Functions. | |||||