|  | Y and Z are independent random variables, uniform distribution on [0,1].
The random variable X is max(Y, Z).
In the following, it is assumed that 0 <= a,b <= 1.
The probability that X < a, given that Y > b is:
    P( X < a | Y > b )	= a(max(a,b)-b)/(1-b)
Other results:
    P( X < a | Y < b )	= a*min(a,b)
    P( Y < b | X > a )	= (b - a*min(a,b))/(1-a^2)
    P( Y < b | X < a )	= min(a,b)/a
    P( X < a )		= a^a
The expected value of X, given that Y > b is:
    E( X | Y > b )	= ( b + sqrt(b^2-2b+2) ) / 2
Other results:
    E( X | Y < b )	= 1/( 2 min(b,sqrt(1/2)) )
    E( Y | X > a )	= sqrt( (a^2+1)/2 )
    E( Y | X < a )	= a/2
 | 
|  | Is this (from .1) correct:
  >  The expected value of X, given that Y > b is:
  >      E( X | Y > b )	= ( b + sqrt(b^2-2b+2) ) / 2
?  I get
	E ( X | Y > 0 ) = 2 / 3
I tried it with this picture:
	z
	-------------------------
	|			|	It's a strip (of W's) on
	|			|	which the function
	|			|		max (y, z)
	|WWWWWWWWWWWWWWW	|	has value x.  The strip is
	|              W	|	2 x dx in area, so
	|              W	|
	|              W	|	E(x) = integral of x 2 x dx
	|              W	|	     = 2 / 3
	|              W	|
	|              W	|
	-------------------------  y
		       x	
John
 | 
|  | Yes, you're right.
Excusing the tacky integral signs, the expected value is:
	   1 1                    1 1
	   S S max(y,z) dz dy  /  S S dz dy
	   b 0                    b 0
	   1   y               1     
	=  S ( S max(y,z) dz + S max(y,z) dz ) dy  /  (1-b)
	   b   0               y     
	   1   y        1     
	=  S ( S y dz + S z dz ) dy  /  (1-b)
	   b   0        y     
	   1    2       2     
	=  S ( y  + (1-y )/2 ) dy  /  (1-b)
	   b                
	   1       2     
	=  S ( (1+y )/2 ) dy  /  (1-b)
	   b                
	           3   y=1
	=  (y/2 + y /6)    / (1-b)
	               y=b    
	                          3
	=  ((1/2 + 1/6) - (b/2 + b /6))  / (1-b)
	                          3
	=  ((1/2 + 1/6) - (b/2 + b /6))  / (1-b)
	               3
	   (4 - 3*b - b )
	=  --------------
	       6 (1-b)
	                   2
	   (1-b) (4 + b + b )
	=  -----------------
	        6 (1-b)
	             2
	=  (4 + b + b ) / 6
 |